What is overfitting and underfitting ? Why do they occur? How do you overcome them?

There are three parts to this answer. What is overfitting and underfitting Why do they occur How can you overcome both of them. Overfitting is the result of over training the model while underfitting is the result of keeping the model too simple, both leading to high generalization error. Overtraining leads to a more complex…

Overfitting is a result of which of the following causes :

Less amount of data Simple Model like a linear classifier Complex Model like a classifier of high degree polynomial All of the above Answer – (1), (3) Overfitting generally happens if the model tries to fit everything because it is too complex or there is too less amount of data. When your model performs well on…

What are the different ways of preventing over-fitting in a deep neural network ? Explain the intuition behind each

L2 norm regularization : Make the weights closer to zero prevent overfitting. L1 Norm regularization : Make the weights closer to zero and also induce sparsity in weights. Less common form of regularization Dropout regularization : Ensure some of the hidden units are dropped out at random to ensure the network does not overfit by…